# **Similarity and Dissimilarity Measures**

## Similarity measure

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]
- Dissimilarity measure
  - Numerical measure of how different two data objects are
  - Lower when objects are more alike
  - Minimum dissimilarity is often 0
  - Upper limit varies

Proximity refers to a similarity or dissimilarity

01/27/2021

#### **Euclidean Distance**

• Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where *n* is the number of dimensions (attributes) and  $x_k$  and  $y_k$  are, respectively, the  $k^{th}$  attributes (components) or data objects **x** and **y**.

#### • Standardization is necessary, if scales differ.

01/27/2021

#### **Euclidean Distance**



| point | X | У |
|-------|---|---|
| p1    | 0 | 2 |
| p2    | 2 | 0 |
| p3    | 3 | 1 |
| p4    | 5 | 1 |

|    | p1    | p2    | р3    | p4    |
|----|-------|-------|-------|-------|
| p1 | 0     | 2.828 | 3.162 | 5.099 |
| p2 | 2.828 | 0     | 1.414 | 3.162 |
| p3 | 3.162 | 1.414 | 0     | 2     |
| p4 | 5.099 | 3.162 | 2     | 0     |

#### **Distance Matrix**

01/27/2021

## Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where *r* is a parameter, *n* is the number of dimensions (attributes) and  $x_k$  and  $y_k$  are, respectively, the  $k^{\text{th}}$  attributes (components) or data objects *x* and *y*.

01/27/2021

## Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L<sub>1</sub> norm) distance.
  - A common example of this for binary vectors is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \rightarrow \infty$ . "supremum" (L<sub>max</sub> norm, L<sub>∞</sub> norm) distance.
  - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

# **Minkowski Distance**

| L1                  | p1    | p2    | p3    | p4        |
|---------------------|-------|-------|-------|-----------|
| p1                  | 0     | 4     | 4     | 6         |
| p2                  | 4     | 0     | 2     | 4         |
| p3                  | 4     | 2     | 0     | 2         |
| p4                  | 6     | 4     | 2     | 0         |
| L2                  | p1    | p2    | p3    | p4        |
| p1                  | 0     | 2.828 | 3.162 | 5.099     |
| p2                  | 2.828 | 0     | 1.414 | 3.162     |
| p3                  | 3.162 | 1.414 | 0     | 2         |
| p4                  | 5.099 | 3.162 | 2     | 0         |
| Т                   |       |       |       |           |
| $- \Gamma^{\infty}$ | p1    | pz    | թշ    | <u>p4</u> |
| p1                  | 0     | 2     | 3     | 5         |
| p2                  | 2     | 0     | 1     | 3         |
| p3                  | 3     | 1     | 0     | 2         |
| p4                  | 5     | 3     | 2     | 0         |

| point | X | у |
|-------|---|---|
| p1    | 0 | 2 |
| p2    | 2 | 0 |
| p3    | 3 | 1 |
| p4    | 5 | 1 |

#### **Distance Matrix**

01/27/2021

#### **Mahalanobis Distance**





For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

01/27/2021

# **Mahalanobis Distance**



# **Common Properties of a Distance**

- Distances, such as the Euclidean distance, have some well known properties.
  - 1.  $d(\mathbf{x}, \mathbf{y}) \ge 0$  for all x and y and  $d(\mathbf{x}, \mathbf{y}) = 0$  if and only if  $\mathbf{x} = \mathbf{y}$ .
  - 2.  $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$  for all  $\mathbf{x}$  and  $\mathbf{y}$ . (Symmetry)
  - 3.  $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$  for all points  $\mathbf{x}, \mathbf{y}$ , and  $\mathbf{z}$ . (Triangle Inequality)

where  $d(\mathbf{x}, \mathbf{y})$  is the distance (dissimilarity) between points (data objects),  $\mathbf{x}$  and  $\mathbf{y}$ .

 A distance that satisfies these properties is a metric

# **Common Properties of a Similarity**

- Similarities, also have some well known properties.
  - 1.  $s(\mathbf{x}, \mathbf{y}) = 1$  (or maximum similarity) only if  $\mathbf{x} = \mathbf{y}$ . (does not always hold, e.g., cosine)
  - 2.  $s(\mathbf{x}, \mathbf{y}) = s(\mathbf{y}, \mathbf{x})$  for all  $\mathbf{x}$  and  $\mathbf{y}$ . (Symmetry)

where  $s(\mathbf{x}, \mathbf{y})$  is the similarity between points (data objects),  $\mathbf{x}$  and  $\mathbf{y}$ .

# **Similarity Between Binary Vectors**

- Common situation is that objects, x and y, have only binary attributes
- Compute similarities using the following quantities  $f_{01}$  = the number of attributes where x was 0 and y was 1  $f_{10}$  = the number of attributes where x was 1 and y was 0  $f_{00}$  = the number of attributes where x was 0 and y was 0  $f_{11}$  = the number of attributes where x was 1 and y was 1
- Simple Matching and Jaccard Coefficients SMC = number of matches / number of attributes =  $(f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$ 
  - J = number of 11 matches / number of non-zero attributes =  $(f_{11}) / (f_{01} + f_{10} + f_{11})$

01/27/2021

# **SMC versus Jaccard: Example**

 $\mathbf{x} = 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$  $\mathbf{y} = 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 1$ 

 $f_{01} = 2 \quad \text{(the number of attributes where } \mathbf{x} \text{ was } 0 \text{ and } \mathbf{y} \text{ was } 1)$  $f_{10} = 1 \quad \text{(the number of attributes where } \mathbf{x} \text{ was } 1 \text{ and } \mathbf{y} \text{ was } 0)$  $f_{00} = 7 \quad \text{(the number of attributes where } \mathbf{x} \text{ was } 0 \text{ and } \mathbf{y} \text{ was } 0)$  $f_{11} = 0 \quad \text{(the number of attributes where } \mathbf{x} \text{ was } 1 \text{ and } \mathbf{y} \text{ was } 1)$ 

SMC = 
$$(f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$$
  
=  $(0+7) / (2+1+0+7) = 0.7$ 

$$\mathbf{J} = (f_{11}) / (f_{01} + f_{10} + f_{11}) = 0 / (2 + 1 + 0) = 0$$

01/27/2021

# **Cosine Similarity**

• If  $\mathbf{d}_1$  and  $\mathbf{d}_2$  are two document vectors, then

 $\cos(\mathbf{d_1}, \mathbf{d_2}) = \langle \mathbf{d_1}, \mathbf{d_2} \rangle / \|\mathbf{d_1}\| \|\mathbf{d_2}\|$ ,

where  $\langle d_1, d_2 \rangle$  indicates inner product or vector dot product of vectors,  $d_1$  and  $d_2$ , and || d || is the length of vector d.

• Example:  $d_{1} = 3 2 0 5 0 0 0 2 0 0$   $d_{2} = 1 0 0 0 0 0 0 1 0 2$   $< d_{1}, d2 >= 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$   $|d_{1}|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$   $||d_{2}|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.449$ 

 $\cos(\mathbf{d_1}, \mathbf{d_2}) = 0.3150$ 

01/27/2021

# Correlation measures the linear relationship between objects

 $\operatorname{corr}(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{covariance}(\mathbf{x}, \mathbf{y})}{\operatorname{standard\_deviation}(\mathbf{x}) * \operatorname{standard\_deviation}(\mathbf{y})} = \frac{s_{xy}}{s_x \ s_y}, \quad (2.11)$ 

where we are using the following standard statistical notation and definitions

$$\operatorname{covariance}(\mathbf{x}, \mathbf{y}) = s_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})$$
(2.12)

standard\_deviation(
$$\mathbf{x}$$
) =  $s_x = \sqrt{\frac{1}{n-1} \sum_{k=1}^n (x_k - \overline{x})^2}$   
standard\_deviation( $\mathbf{y}$ ) =  $s_y = \sqrt{\frac{1}{n-1} \sum_{k=1}^n (y_k - \overline{y})^2}$ 

$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k \text{ is the mean of } \mathbf{x}$$
$$\overline{y} = \frac{1}{n} \sum_{k=1}^{n} y_k \text{ is the mean of } \mathbf{y}$$

01/27/2021

## **Visually Evaluating Correlation**



Scatter plots showing the similarity from -1 to 1.

Tan, Steinbach, Karpatne, Kumar

# **Drawback of Correlation**



mean(x) = 0, mean(y) = 4
std(x) = 2.16, std(y) = 3.74

• corr = (-3)(5)+(-2)(0)+(-1)(-3)+(0)(-4)+(1)(-3)+(2)(0)+3(5) / (6 \* 2.16 \* 3.74))= 0

01/27/2021

 $y_{i} = x_{i}^{2}$ 

## **Correlation vs Cosine vs Euclidean Distance**

- Compare the three proximity measures according to their behavior under variable transformation
  - scaling: multiplication by a value
  - translation: adding a constant

| Property                              | Cosine | Correlation | Euclidean Distance |
|---------------------------------------|--------|-------------|--------------------|
| Invariant to scaling (multiplication) | Yes    | Yes         | No                 |
| Invariant to translation (addition)   | No     | Yes         | No                 |

#### • Consider the example

- $\mathbf{x} = (1, 2, 4, 3, 0, 0, 0), \mathbf{y} = (1, 2, 3, 4, 0, 0, 0)$
- $y_s = y * 2$  (scaled version of y),  $y_t = y + 5$  (translated version)

| Measure            | (x , y) | (x , y <sub>s</sub> ) | ( <b>x</b> , y <sub>t</sub> ) |
|--------------------|---------|-----------------------|-------------------------------|
| Cosine             | 0.9667  | 0.9667                | 0.7940                        |
| Correlation        | 0.9429  | 0.9429                | 0.9429                        |
| Euclidean Distance | 1.4142  | 5.8310                | 14.2127                       |

#### 01/27/2021

# **Comparison of Proximity Measures**

#### Domain of application

- Similarity measures tend to be specific to the type of attribute and data
- Record data, images, graphs, sequences, 3D-protein structure, etc. tend to have different measures
- However, one can talk about various properties that you would like a proximity measure to have
  - Symmetry is a common one
  - Tolerance to noise and outliers is another
  - Ability to find more types of patterns?
  - Many others possible
- The measure must be applicable to the data and produce results that agree with domain knowledge

# **Information Based Measures**

- Information theory is a well-developed and fundamental disciple with broad applications
- Some similarity measures are based on information theory
  - Mutual information in various versions
  - Maximal Information Coefficient (MIC) and related measures
  - General and can handle non-linear relationships
  - Can be complicated and time intensive to compute

# **Information and Probability**

- Information relates to possible outcomes of an event
  - transmission of a message, flip of a coin, or measurement
     of a piece of data
- The more certain an outcome, the less information that it contains and vice-versa
  - For example, if a coin has two heads, then an outcome of heads provides no information
  - More quantitatively, the information is related the probability of an outcome
    - The smaller the probability of an outcome, the more information it provides and vice-versa
  - Entropy is the commonly used measure

01/27/2021

# Entropy

For

- a variable (event), X,
- with *n* possible values (outcomes),  $x_1, x_2, ..., x_n$
- each outcome having probability,  $p_1, p_2 \dots, p_n$
- the entropy of X, H(X), is given by

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

- Entropy is between 0 and log<sub>2</sub>n and is measured in bits
  - Thus, entropy is a measure of how many bits it takes to represent an observation of X on average

01/27/2021

# **Entropy Examples**

• For a coin with probability p of heads and probability q = 1 - p of tails

$$H = -p\log_2 p - q\log_2 q$$

- For 
$$p=0.5$$
,  $q=0.5$  (fair coin)  $H=1$ 

- For 
$$p = 1$$
 or  $q = 1$ ,  $H = 0$ 

#### • What is the entropy of a fair four-sided die?

01/27/2021

# **Entropy for Sample Data: Example**

| Hair Color | Count | p    | <i>-p</i> log <sub>2</sub> <i>p</i> |
|------------|-------|------|-------------------------------------|
| Black      | 75    | 0.75 | 0.3113                              |
| Brown      | 15    | 0.15 | 0.4105                              |
| Blond      | 5     | 0.05 | 0.2161                              |
| Red        | 0     | 0.00 | 0                                   |
| Other      | 5     | 0.05 | 0.2161                              |
| Total      | 100   | 1.0  | 1.1540                              |

## Maximum entropy is $log_2 5 = 2.3219$

01/27/2021

# **Entropy for Sample Data**

#### Suppose we have

- a number of observations (m) of some attribute, X,
   e.g., the hair color of students in the class,
- where there are n different possible values
- And the number of observation in the  $i^{th}$  category is  $m_i$
- Then, for this sample

$$H(X) = -\sum_{i=1}^{n} \frac{m_i}{m} \log_2 \frac{m_i}{m}$$

#### For continuous data, the calculation is harder

# **Mutual Information**

Information one variable provides about another

Formally, I(X, Y) = H(X) + H(Y) - H(X, Y), where

H(X,Y) is the joint entropy of X and Y,

$$H(X,Y) = -\sum_{i}\sum_{j}p_{ij}\log_2 p_{ij}$$

Where  $p_{ij}$  is the probability that the *i*<sup>th</sup> value of *X* and the *j*<sup>th</sup> value of *Y* occur together

- For discrete variables, this is easy to compute
- Maximum mutual information for discrete variables is  $\log_2(\min(n_X, n_Y))$ , where  $n_X(n_Y)$  is the number of values of X(Y)

| 01/27/2 | 021 |
|---------|-----|
|---------|-----|

# **Mutual Information Example**

| Student<br>Status | Count | p    | <i>-p</i> log <sub>2</sub> <i>p</i> |
|-------------------|-------|------|-------------------------------------|
| Undergrad         | 45    | 0.45 | 0.5184                              |
| Grad              | 55    | 0.55 | 0.4744                              |
| Total             | 100   | 1.00 | 0.9928                              |

| Grade | Count | p    | -plog <sub>2</sub> p |
|-------|-------|------|----------------------|
| А     | 35    | 0.35 | 0.5301               |
| В     | 50    | 0.50 | 0.5000               |
| С     | 15    | 0.15 | 0.4105               |
| Total | 100   | 1.00 | 1.4406               |

| Student<br>Status | Grade | Count | р    | <i>-p</i> log <sub>2</sub> <i>p</i> |
|-------------------|-------|-------|------|-------------------------------------|
| Undergrad         | А     | 5     | 0.05 | 0.2161                              |
| Undergrad         | В     | 30    | 0.30 | 0.5211                              |
| Undergrad         | С     | 10    | 0.10 | 0.3322                              |
| Grad              | А     | 30    | 0.30 | 0.5211                              |
| Grad              | В     | 20    | 0.20 | 0.4644                              |
| Grad              | С     | 5     | 0.05 | 0.2161                              |
| Total             |       | 100   | 1.00 | 2.2710                              |

Mutual information of Student Status and Grade = 0.9928 + 1.4406 - 2.2710 = 0.1624

| 01/2 | 27/2 | 021 |
|------|------|-----|
|------|------|-----|