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Similarity and Dissimilarity Measures

! Similarity measure
– Numerical measure of how alike two data objects are.
– Is higher when objects are more alike.
– Often falls in the range [0,1]

! Dissimilarity measure
– Numerical measure of how different two data objects 

are 
– Lower when objects are more alike
– Minimum dissimilarity is often 0
– Upper limit varies

! Proximity refers to a similarity or dissimilarity
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Euclidean Distance

! Euclidean Distance

where n is the number of dimensions (attributes) and 
xk and yk are, respectively, the kth attributes 
(components) or data objects x and y.

! Standardization is necessary, if scales differ.
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Euclidean Distance
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point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

Distance Matrix

p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0
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Minkowski Distance

! Minkowski Distance is a generalization of Euclidean 
Distance

Where r is a parameter, n is the number of dimensions 
(attributes) and xk and yk are, respectively, the kth
attributes (components) or data objects x and y.
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Minkowski Distance: Examples

! r = 1.  City block (Manhattan, taxicab, L1 norm) distance. 
– A common example of this for binary vectors is the 

Hamming distance, which is just the number of bits that are 
different between two binary vectors

! r = 2.  Euclidean distance

! r® ¥.  “supremum” (Lmax norm, L¥ norm) distance. 
– This is the maximum difference between any component of 

the vectors

! Do not confuse r with n, i.e., all these distances are 
defined for all numbers of dimensions.
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Minkowski Distance

Distance Matrix

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

L1 p1 p2 p3 p4
p1 0 4 4 6
p2 4 0 2 4
p3 4 2 0 2
p4 6 4 2 0

L2 p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

L¥ p1 p2 p3 p4
p1 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0
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Mahalanobis Distance

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

S is the covariance matrix

!"#"$"%&'() *, , = ((* − ,)1 Ʃ34(* − ,))-0.5
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Mahalanobis Distance

Covariance 
Matrix:
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Common Properties of a Distance

! Distances, such as the Euclidean distance, 
have some well known properties.

1. d(x, y) ³ 0   for all x and y and d(x, y) = 0 if and only 
if  x = y.

2. d(x, y) = d(y, x)   for all x and y. (Symmetry)
3. d(x, z) £ d(x, y) + d(y, z) for all points x, y, and z.  

(Triangle Inequality)

where d(x, y) is the distance (dissimilarity) between 
points (data objects), x and y.

! A distance that satisfies these properties is a 
metric
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Common Properties of a Similarity

! Similarities, also have some well known 
properties.

1. s(x, y) = 1 (or maximum similarity) only if x = y. 
(does not always hold, e.g., cosine)

2. s(x, y) = s(y, x) for all x and y. (Symmetry)

where s(x, y) is the similarity between points (data 
objects), x and y.
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Similarity Between Binary Vectors

! Common situation is that objects, x and y, have only 
binary attributes

! Compute similarities using the following quantities
f01 = the number of attributes where x was 0 and y was 1
f10 = the number of attributes where x was 1 and y was 0
f00 = the number of attributes where x was 0 and y was 0
f11 = the number of attributes where x was 1 and y was 1

! Simple Matching and Jaccard Coefficients 
SMC =  number of matches / number of attributes 

=  (f11 + f00) / (f01 + f10 + f11 + f00)

J = number of 11 matches / number of non-zero attributes
= (f11) / (f01 + f10 + f11) 



01/27/2021 43Introduction to Data Mining, 2nd Edition   
Tan, Steinbach, Karpatne, Kumar

SMC versus Jaccard: Example

x =  1 0 0 0 0 0 0 0 0 0    
y =  0 0 0 0 0 0 1 0 0 1

f01 = 2   (the number of attributes where x was 0 and y was 1)
f10 = 1   (the number of attributes where x was 1 and y was 0)
f00 = 7   (the number of attributes where x was 0 and y was 0)
f11 = 0   (the number of attributes where x was 1 and y was 1)

SMC = (f11 + f00) / (f01 + f10 + f11 + f00)
= (0+7) / (2+1+0+7) = 0.7 

J = (f11) / (f01 + f10 + f11) = 0 / (2 + 1 + 0) = 0 
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Cosine Similarity

! If d1 and d2 are two document vectors, then
cos( d1, d2 ) = <d1,d2> / ||d1|| ||d2|| ,

where <d1,d2> indicates inner product or vector dot
product of vectors, d1 and d2, and || d || is the length of
vector d.

! Example:

d1 = 3 2 0 5 0 0 0 2 0 0
d2 =  1 0 0 0 0 0 0 1 0 2

<d1, d2> =  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

| d1 || = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481

|| d2 || = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.449

cos(d1, d2 ) = 0.3150
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Correlation measures the linear relationship 
between objects
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Visually Evaluating Correlation

Scatter plots 
showing the 
similarity from 
–1 to 1.
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Drawback of Correlation

! x = (-3, -2, -1, 0, 1, 2, 3)
! y = (9, 4, 1, 0, 1, 4, 9)

yi = xi
2

! mean(x) = 0, mean(y) = 4
! std(x) = 2.16, std(y) = 3.74

! corr = (-3)(5)+(-2)(0)+(-1)(-3)+(0)(-4)+(1)(-3)+(2)(0)+3(5) / ( 6 * 2.16 * 3.74 )
= 0



01/27/2021 48Introduction to Data Mining, 2nd Edition   
Tan, Steinbach, Karpatne, Kumar

Correlation vs Cosine vs Euclidean Distance

! Compare the three proximity measures according to their behavior under 
variable transformation

– scaling: multiplication by a value
– translation: adding a constant

! Consider the example
– x = (1, 2, 4, 3, 0, 0, 0), y = (1, 2, 3, 4, 0, 0, 0)
– ys = y * 2 (scaled version of y),  yt = y + 5 (translated version)

Property Cosine Correlation Euclidean Distance

Invariant to scaling 
(multiplication)

Yes Yes No

Invariant to translation 
(addition)

No Yes No

Measure (x , y) (x , ys) (x , yt)

Cosine 0.9667 0.9667 0.7940

Correlation 0.9429 0.9429 0.9429

Euclidean Distance 1.4142 5.8310 14.2127
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Comparison of Proximity Measures

! Domain of application
– Similarity measures tend to be specific to the type of 

attribute and data 
– Record data, images, graphs, sequences, 3D-protein 

structure, etc. tend to have different measures
! However, one can talk about various properties that 

you would like a proximity measure to have
– Symmetry is a common one
– Tolerance to noise and outliers is another
– Ability to find more types of patterns? 
– Many others possible

! The measure must be applicable to the data and 
produce results that agree with domain knowledge
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Information Based Measures

! Information theory is a well-developed and 
fundamental disciple with broad applications

! Some similarity measures are based on 
information theory 
– Mutual information in various versions
– Maximal Information Coefficient (MIC) and related 

measures
– General and can handle non-linear relationships
– Can be complicated and time intensive to compute
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Information and Probability

! Information relates to possible outcomes of an event 
– transmission of a message, flip of a coin, or measurement 

of a piece of data 

! The more certain an outcome, the less information 
that it contains and vice-versa

– For example, if a coin has two heads, then an outcome of 
heads provides no information

– More quantitatively, the information is related the 
probability of an outcome
u The smaller the probability of an outcome, the more information it 

provides and vice-versa
– Entropy is the commonly used measure
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Entropy

! For 
– a variable (event), X, 
– with n possible values (outcomes), x1, x2 …, xn

– each outcome having probability, p1, p2 …, pn

– the entropy of X , H(X), is given by

! " = −%
&'(

)
*&log. *&

! Entropy is between 0 and log2n and is measured in 
bits

– Thus, entropy is a measure of how many bits it takes to 
represent an observation of X on average
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Entropy Examples

! For a coin with probability p of heads and 
probability q = 1 – p of tails

! = −$ log( $ −) log( )
– For p= 0.5, q = 0.5 (fair coin) H = 1
– For p = 1 or q = 1, H = 0

! What is the entropy of a fair four-sided die? 
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Entropy for Sample Data: Example

Maximum entropy is log25 = 2.3219

Hair Color Count p -plog2p

Black 75 0.75 0.3113
Brown 15 0.15 0.4105
Blond 5 0.05 0.2161
Red 0 0.00 0
Other 5 0.05 0.2161
Total 100 1.0 1.1540
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Entropy for Sample Data

! Suppose we have 
– a number of observations (m) of some attribute, X, 

e.g., the hair color of students in the class, 
– where there are n different possible values
– And the number of observation in the ith category is mi
– Then, for this sample

! " = −%
&'(

) *&
* log.

*&
*

! For continuous data, the calculation is harder
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Mutual Information

! Information one variable provides about another

Formally, ! ", $ = & " + & $ − &(", $), where

H(X,Y) is the joint entropy of X and Y, 

& ", $ = −+
,
+
-
./0log4 ./0

Where pij is the probability that the ith value of X and the jth value of Y
occur together 

! For discrete variables, this is easy to compute

! Maximum mutual information for discrete variables is 
log2(min( nX, nY ), where nX (nY) is the number of values of X (Y) 
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Mutual Information Example

Student 
Status

Count p -plog2p

Undergrad 45 0.45 0.5184

Grad 55 0.55 0.4744

Total 100 1.00 0.9928

Grade Count p -plog2p
A 35 0.35 0.5301

B 50 0.50 0.5000

C 15 0.15 0.4105

Total 100 1.00 1.4406

Student 
Status

Grade Count p -plog2p

Undergrad A 5 0.05 0.2161

Undergrad B 30 0.30 0.5211

Undergrad C 10 0.10 0.3322

Grad A 30 0.30 0.5211

Grad B 20 0.20 0.4644

Grad C 5 0.05 0.2161

Total 100 1.00 2.2710

Mutual information of Student Status and Grade =  0.9928 + 1.4406 - 2.2710 = 0.1624


